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CHAPTER 4: SEQUENCE ANALYSIS 

1 The biological problem 

1.a Relevant questions 

1.b Biological words (k=1) 

2 Probability theory revisited 

2.a Probability distributions 

2.b Simulating from probability distributions 
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3 Biological words (k=2) 

4 Markov Chains 

5 Biological words (k=3) 

6 Modeling the number of restriction sites in DNA 

  



Bioinformatics                                                                                                                                                                                  Chapter 4: Sequence analysis 

 

K Van Steen                                     241 
 

1 The biological problem 

1.a  Questions 

What does sequence analysis enclose? 

Sequence analysis includes:  

• Multiple sequence alignment,  

• sequence searches and clustering;  

• prediction of function and localisation;  

• novel domains and motifs;  

• prediction of protein, RNA and DNA functional sites and  

other sequence features.  

(Bioinformatics Journal scope) 
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Types of analyses 

• GC content 

• Pattern analysis 

• Translation (Open Reading Frame detection) 

• Gene finding 

• Mutation 

• Primer design 

• Restriction map  
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GC content studies:  

- Stability 

- GC: 3 hydrogen bonds 

- AT: 2 hydrogen bonds 

- Codon preference 

- GC rich fragment has increased probability to point towards a gene 

What is a CpG island? 
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CpG island 

• The CG island is a short stretch of DNA in which the frequency of the CG 

sequence is higher than other regions.  It is also called the CpG island, 

where "p" simply indicates that "C" and "G" are connected by a 

phosphodiester bond.   

• CpG islands are often located around the promoters of housekeeping genes 

(which are essential for general cell functions) or other genes frequently 

expressed in a cell.   

• At these locations, the CG sequence is not methylated.   

 

(http://www.web-books.com/MoBio/Free/Ch7F2.htm) 
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CpG island 

• By contrast, the CG sequences in inactive genes are usually methylated to 

suppress their expression.  The methylated cytosine may be converted to 

thymine by accidental deamination.  Unlike the cytosine to uracil mutation 

which is efficiently repaired, the cytosine to thymine mutation can be 

corrected only by the mismatch repair which is very inefficient.   

• Hence, over evolutionary time scales, the methylated CG sequence will be 

converted to the TG sequence.  This explains the deficiency of the CG 

sequence in inactive genes. 

(http://www.web-books.com/MoBio/Free/Ch7F2.htm) 
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Relevant questions 

Given the DNA sequence  

AATCGGATGCGCGTAGGATCGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGA

TTCGATTCTAGCTAGGTTTAGCTTAGCTTAGTGCCAGAAATCGGATGCGCGTAGGAT

CGGTAGGGTAGGCTTTAAGATCATGCTATTTTCGAGATTCGATTCTAGCTAGGTTTT

TAGTGCCAGAAATCGTTAGTGCCAGAAATCGATT 

.. 

 

many questions arise
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Relevant questions 

• Is it likely to be a gene? 

• What is the possible expression 

level? 

• What is the possible protein 

product? 

• Can we get the protein product? 

• Can we figure out the key residue 

in the protein product? 

• What sort of statistics to be used 

for describing this sequence? 

 

 

• Can we determine the 

organism from which this 

sequence came? 

• Do parameters describing the 

sequence differ from those 

describing bulk DNA in that 

organism? 

• What sort of sequence might 

this be?  

- Protein coding? 

- Cenromere / Telomere?
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Tools to answer the questions 
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Tools to answer the questions 
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Recall: Different cell types

• Eukaryotes:  organisms with a rat

cells we find organelles, clearly discernable compartments with a particular 

function and structure.  

- The organelles are surrounded 

by semi-permeable 

membranes that 

compartmentalize them 

further in the cytoplasm. 

- The Golgi apparatus is an 

example of an organelle that is 

involved in the transport and 

secretion of proteins in the 

cell. 
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Different cell types 

organisms with a rather complex cellular structure. In their 

cells we find organelles, clearly discernable compartments with a particular 

 

The organelles are surrounded 

compartmentalize them 

further in the cytoplasm.  

The Golgi apparatus is an 

example of an organelle that is 

involved in the transport and 

secretion of proteins in the 

- Mitochondria are other 

examples of organelles, and 

are involved in respiration and 

energy production
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Recall: Different cell types 

• Prokaryotes: cells without organelles where the genetic information floats 

freely in the cytoplasm 
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For instance, base composition for bacterial data: 

 

(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi) 
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Focus on human data and Bioconductor / R Environment 
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Methods to answer the questions 

 

For instance by investigating frequencies of occurrences of words 

 

Words 

• Words are short strings of letters drawn from an alphabet 

• In the case of DNA, the set of letters is A, C, T, G 

• A word of length k is called a k-word or k-tuple 

• Differences in word frequencies help to differentiate between different 

DNA sequence sources or regions 

• Examples: 

- 1-tuple: individual nucleotide 

- 2-tuple: dinucleotide 

- 3-tuple: codon 
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1.b Biological words of length 1 or base composition 

• For free-living organisms, DNA is typically duplex 

- Every A (G) on one strand is matched by a T (C) on the complementary 

strand 

• Note the difference with bacteriophages (viruses that infect bacteria) 

- Bacterium, the singular form of the word bacteria, is a one-celled living 

organism, with complete sets of both ribonucleic acid (RNA) and 

deoxyribonucleic acid (DNA) genetic codes.  

- A virus is little more than a section of RNA or DNA strand covered by a 

protein shell.  
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Biological words of length 1 

• There are constraints on base composition imposed by the genetic code: 

fr(C+G)=0? 

• The distribution of individual bases within a DNA molecule is not ordinarily 

uniform 

- In prokaryotic genomes, there is an excess of G over C on the leading 

strands (strands whose 5’ to 3’ direction corresponds to the direction of 

replication fork movement) 

- This can be described by the “GC skew”, characterized by: 

� (#G - #C) / (#G + #C) 

� # = nr of 
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2 Probability theory revisited 

2.a Probability distributions 

 

Introduction 

 

• Probability distributions are a fundamental concept in statistics. They are 

used both on a theoretical level and a practical level.  

• Some practical uses of probability distributions are:  

- to calculate confidence intervals for parameters and  

- to calculate critical regions for hypothesis tests.  
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Introduction 

• Statistical intervals and hypothesis tests are often based on specific 

distributional assumptions. Before computing an interval or test based on a 

distributional assumption, we need to verify that the assumption is justified 

for the given data set. In this case, the distribution does not need to be the 

best-fitting distribution for the data, but an adequate enough model so that 

the statistical technique yields valid conclusions.  

• Simulation studies usually rely on random numbers generation. These 

generations are from a specific probability distribution …  
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Introduction 

• Discrete probability functions are referred to as probability mass functions 

and continuous probability functions are referred to as probability density 

functions.  

- The term probability function covers both discrete and continuous 

distributions. When we are referring to probability functions in generic 

terms, we may use the term probability density functions to mean both 

discrete and continuous probability functions.   
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Assumptions 

• Consider the nucleotide sequence on a single strand written in a given 5’ to 

3’ direction 

• Simple rules specifying a probability model: 

- First base in sequence is either A, C, T or G with prob pA, pC, pT, pG 

- Suppose the first r bases have been generated, while generating the 

base at position r+1, no attention is paid to what has been generated 

before. A, C, T or G is generated with the probabilities above 

• Notation for the output of a random string of n bases: L1, L2, …, Ln (Li = base 

inserted at position i of the sequence) 
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Probability distributions 

• Suppose the “machine” we are using produces an output X that takes 

exactly 1 of the J possible values in a set � �  ���, ��, … , �
 � 

- In the DNA sequence J=4 and � �  ��, , �, � � 

- X is a discrete random variables (since its values are uncertain) 

- If pj is the prob that the value xj occurs, then 

� ��, … , ��  � � and �� �  … �  �� � 1 

• The probability distribution (probability mass function) of X is given by the 

collection ��, … , �� 

- P(X=xj) = pj, j=1, …, J 

• The probability that an event S occurs (subset of �) is P(X � �) = ∑  ����:�  �! " 

  



Bioinformatics                                                                                                                                                                                  Chapter 4: Sequence analysis 

 

K Van Steen                                     262 
 

Meaning of the probability distribution 

•  A discrete probability function is a function that can take a discrete number 

of values (not necessarily finite). This is most often the non-negative 

integers or some subset of the non-negative integers.  

• There is no mathematical restriction that discrete probability functions only 

be defined at integers, but in practice this is usually what makes sense.  

- For example, if you toss a coin 6 times, you can get 2 heads or 3 heads 

but not 2 1/2 heads.  

- Each of the discrete values has a certain probability of occurrence that 

is between zero and one. That is, a discrete function that allows 

negative values or values greater than one is not a probability function. 

The condition that the probabilities sum to one means that at least one 

of the values has to occur.   
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Probability distributions 

• What is the probability distribution of the number of times a given pattern 

occurs in a random DNA sequence L1, …, Ln? 

- New sequence X1, …, Xn: 

Xi=1 if Li=A and Xi=0 else 

- The number of times N that A appears is the sum 

N=X1+…+Xn 

- The prob distr of each of the Xi: 

P(Xi=1) = P(Li=A)=pA 

P(Xi=0) = P(Li=C or G or T) = 1 - pA 

• What is a “typical” value of N? 

- Depends on how the individual Xi  (for different i) are interrelated  
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Independence 

• Discrete random variables X1, …, Xn are said to be independent if for any 

subset of random variables and actual values, the joint distribution equals 

the product of the component distributions 

• According to our simple model, the Li are independent and hence 

P(L1=l1,L2=l2, …,Ln=ln)=P(L1=l1) P(L2=l2) …P(Ln=ln) 
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Expected values and variances 

• Mean and variance are two important properties of real-valued random 

variables and corresponding probability distributions. 

• The “mean” of a discrete random variable X taking values x1, x2, . . . (de- 

noted EX, where E stands for expectation, which is another term 

for mean) is defined as: 

 
- EXi = 1 #pA�0 # �1 %pA" 

- If Y=cX, then EY = cEX 

- E(X1 +… + Xn) = EX1 + … + EXn 

• Because Xi are assumed to be independent and identically distributed (iid): 

E(X1 +… + Xn) = nEX1 = npA 
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Expected values and variances 

• The expected value of a random variable X gives a measure of its location. 

Variance is another property of a probability distribution dealing with the 

spread or variability of a random variable around its mean. 
 

 
- The positive square root of the variance of X is called its standard 

deviation sd(X) 

 

Do you know the difference between standard error and standard deviation? 
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Expected values and variances 

• The idea is to use squared deviations of X from its center (expressed by the 

mean). Expanding the square and using the linearity properties of the 

mean, the Var(X) can also be written as: 

 

 
- If Y=cX then VarY = c

2
VarX 

- The variance of a sum of independent random variables is the sum of 

the individual variances 

 

• For the random variables Xi: 

VarXi = &1�  # �' �  0�  #( �1 % �'") %  �'� = �'�1 % �'" 

VarN = nVarX1 = *�'�1 % �'"  
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The binomial distribution 

 

• The binomial distribution is used when there are exactly two mutually 

exclusive outcomes of a trial. These outcomes are appropriately labeled 

"success" and "failure". The binomial distribution is used to obtain the 

probability of observing x successes in a fixed number of trials, with the 

probability of success on a single trial denoted by p. The binomial 

distribution assumes that p is fixed for all trials. 

• The formula for the binomial probability mass function is : +�, � -" � .*- / ���1 % �"
0�, j = 0,1, …,n 

with the binomial coefficient .*- / determined by 

.*- / �  *!-! �* % -"!, 
and j!=j(j-1)(j-2)…3.2.1, 0!=1 
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The binomial distribution 

 

• The mean is np and the variance is np(1-p) 

• The following is the plot of the binomial probability density function for 

four values of p and n = 100. 
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2.b Simulating from probability distributions 

• The idea is that we can study the properties of the distribution of N when 

we  can get our computer to output numbers N1, …, Nn having the same 

distribution as N 

- We can use the sample mean to estimate the expected value EN: 

,2 �  �,� �  … �  ,
"/* 

- Similarly, we can use the sample variance to estimate the true variance 

of N: 

4� �  1* % 1 5�,6 %  ,2"�

67�

 

Why do we use (n-1) and not n in the denominator?  
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Simulating from probability distributions 

• What is needed to produce such a string of observations? 

- Access to pseudo-random numbers: random variables that are 

uniformly distributed on (0,1): any number between 0 and 1 is a 

possible outcome and each is equally likely 

• Simulating an observation with the distribution of X1: 

- Take a uniform random number u 

- Set X1=1 if 8 9 � :  �'  and 0 otherwise.  

- Why does this work?   …  

- Repeating this procedure n times results in a sequence X1, …, Xn from 

which N can be computed by adding the X’s 
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Simulating from probability distributions 

 

• Simulate a sequence of bases L1, …, Ln: 

- Divide the interval (0,1) in 4 intervals with endpoints �', �' � �; , �' � �; � �< , 1  
- If the simulated u lies in the leftmost interval, L1=A 

- If u lies in the second interval, L1=C; if in the third, L1=G and otherwise 

L1=T 

- Repeating this procedure n times with different values for U results in a 

sequence L1, …, Ln 

• Use the “sample” function in R: 

pi <- c(0.25,0.75) 

x<-c(1,0) 

set.seed(2009) 

sample(x,10,replace=TRUE,pi) 
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Simulating from probability distributions 

 

• By looking through a given 

simulated sequence, we can count 

the number of times a particular 

pattern arises (for instance, the 

base A) 

• By repeatedly generating 

sequences and analyzing each of 

them, we can get a feel for 

whether or not our particular 

pattern of interest is unusual 
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Simulating from probability distributions 

• Using R code: 

 

x<- rbinom(2000,1000,0.25) 

mean(x) 

sd(x)^2 

hist(x,xlab="Number of successes",main="") 

What is the number of observations? 

• Suppose we have a sequence of 1000bp and assume that every base occurs 

with equal probability. How likely are we to observe at least 300 A’s in such 

a sequence? 

- Exact computation using a closed form of the relevant distribution 

- Approximate via simulation  

- Approximate using the Central Limit Theory 
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Exact computation via closed form of relevant distribution 

• The formula for the binomial probability mass function is : +�, � -" � .*- / ���1 % �"
0�, j = 0,1, …,n 

   and therefore 

+�, � 300" �  5 >1000- ? ��@@@
�7A@@

1/4"��1 % 1/4"�@@@0� 

      = 0.00019359032194965841  
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(http://faculty.vassar.edu/lowry/binomialX.html)  
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Approximate via simulation 

• Using R code and simulations from the theoretical distribution, 

 +�, � 300" can be estimated as 0.000196 via. 

x<- rbinom(1000000,1000,0.25) 

sum(x>=300)/1000000 

 

    or 0.0001479292 via  
1-pbinom(300,size=1000,prob=0.25) 

pbinom(300,size=1000,prob=0.25,lower.tail=FALSE) 
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Approximate via Central Limit Theory 

• The central limit theorem offers a 3
rd

 way to compute probabilities of a 

distribution 

• It applies to sums or averages of iid random variables 

• Assuming that X1, …, Xn are iid random variables with mean C and variance D�, then we know that for the sample average EF
 �  �
  �E� �  … �  E
", 

EEF
 = C and Var EF
 = 
GH

  

• Hence,  

I JEF
 %  CD/√* L � 0, MNO JEF
 %  CD/√* L � 1 
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Approximate via Central Limit Theory 

• The central limit theorem states that if the sample size n is large enough,  

+ JN 9  PFQ0 RS√Q  9 TL U  V�T" %  V�N", 

with V�. " the standard normal distribution defined as 

V�X" � +�Y 9 X" �  Z V��"[�\
0]  

• The central limit theorem in action using R code: 

bin25<-rbinom(1000,25,0.25) 

av.bin25 <- 25*0.25 

stdev.bin25 <- sqrt(25*0.25*0.75) 

bin25<-(bin25-av.bin25)/stdev.bin25 

hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,xlab="Sample size 

25",main="") 

x<-seq(-4,4,0.1) 

lines(x,dnorm(x))   
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Approximate via Central Limit Theory 
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Approximate via Central Limit Theory 

• Estimating the quantity +�, � 300" when N has a binomial distribution 

with parameters n=1000 and p=0.25, I�," � *C � 1000 # 0.25 � 250, 
4[�," �   √* D � `1000 # 14 # 34  U 13.693 

+�, � 300" � + >, % 25013.693  c  300 % 25013.693 ? 

                                        U +�Y c  3.651501" �  0.0001303560 

• R code: 

pnorm(3.651501,lower.tail=FALSE) 

 

How do the estimates of +�, � 300" compare? 
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3 Biological words of length 2 

Introduction 

• Dinucleotides are important because physical parameters associated with 

them can describe the trajectory of the DNA helix through space (such as 

DNA bending). This may affect gene expression. 

• Concentrating on abundances, and assuming the iid model for L1, …, Ln: +�d6 � e6 , d6f� � e6f�" � �gh �ghij  
• Has a given sequence an unusual dinucleotide frequency compared to the 

iid model? 

- Compare observed O with expected E dinucleotide numbers 

χ� �  �l0m"H
m , 

   with I � �* % 1"�gh�ghij.  

Why (n-1) as factor? 
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Comparing to the reference 

• How to determine which values of χ�are unlikely or extreme? 

- Recipe:  

� Compute the number c given by  

n � o1 � 2�gh %  3�gh� ,  if e6 �  e6f�1 % 3�gh�ghij ,        if e6  r  e6f� s  
� Calculate the ratio 

tH
u , where χ�is given as before 

� If this ratio is larger than 3.84 then conclude that the iid model is 

not a good fit 

� Note: qchisq(0.95,1) = 3.84 
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Comparing to the reference 

• How to determine which values of χ�are unlikely or extreme? 

- Simulate percentage points of the distribution of the statistic  χ�: 

� Generate strings of 1000 letters having distribution e.g., 

(0.3,0.2,0.3,0.2) for (A,C,T,G) 

� Calculate O, the number of times the pair AC is observed 

� Calculate E and 
tH
u  

� Plot a histogram of these values  

� Compare  

 

What is the theoretical distribution?  
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4 Markov Chains 

 

Introduction 

• When moving from bacteria (such as E. coli, a common type of bacteria that 

can get into food, like beef and vegetables) to real genomes, a more 

complicated probabilistic model is required then the iid model before to 

capture the dinucleotide properties 

• One approach is to use Markov chains.  

• Markov chains are a direct generalization of independent trials, where the 

character at a position may depend on the characters of preceding 

positions, hence may be conditioned on preceding positions 
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Conditional probabilities 

• If Ω refers to the set of all possible outcomes of a single experiment, A to a 

particular event, and A
c
 to the complement Ω-A of A, then 

 +��" �  +��v" � 1, 
 

• The conditional probability of A given B is +��|x" �  y�'z{"y�{" , +�x" c 0 

• As a consequence: +�x|�" �  y�'|{" y�{"y�'" , also known as Bayes’ Theorem 

• For B1, …, Bk forming a partition of Ω, this is the Bi are disjoint and the Bi are 

exhaustive (their union Is Ω), the law of total probability holds: 

+��" �  5 +�� z x|"}
67�

�  5 +��|x|" +�x|"}
67�
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The Markov property 

• The property will be explained via studying a sequence of random variables 

Xt, t=0,1,… taking values in the state space {A,C,T,G} 

• The sequence �E~ , � � 0� is called a first-order Markov chain if only the 

previous neighbor influences the probability distribution of the character at 

any position, and hence satisfies the Markov property: 

 +�E~f� � - |E~ � |, E~0� � |~0�, … , E@ � |@" � +�E~f� � -|E~ � |" 

 for � � 0 and for all |, -, |~0�, … , |@ in the state space 

 

• We consider Markov chains that are homogeneous:  +�E~f� � -|E~ � |" �  �6�  (i.e. independent of the position t) 
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The Markov property 

• The �6�  are the elements of a matrix P called the one-step transition matrix 

of the chain.  

- Note that ∑ �6� � 1�  for DNA sequences 

- How does a one-step transition matrix look like for DNA sequences? 

- Which situation corresponds to the iid model? 

• Stepping from one position to the next is one issue, how to start is another 

issue 

- An initial probability distribution is needed as well 

- It is determined by a vector of probabilities corresponding to every 

possible initial state value i: �6�@" � �6 � +�E@ � |" 
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The Markov property 

• The probability distribution for the states at position 1 can be obtained as 

follows: 

 +�E� � -" �  ∑ +�E@ � |, E� � -"6 � �  

                     �  ∑ +�E@ � |" +�E� � -|E@ � |"6 � �  

                     �  ∑ �6�6�6 � �  
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The Markov property 

• To compute the probability distribution for the states at position 2, we first 

show that +�E� � -|E@ � |" is the ij-th element of PP=P
2 

 

 

   +�E� � -|E@ � |" � ∑ +�E� � -, E� � �| E@ � |"} � �  

                                     � ∑ +�E� � -|E� � �, E@ � |"+�E� � �| E@ � |"} � �  

                                     � ∑ +�E� � -|E� � �"+�E� � �| E@ � |"} � �  

                                     � ∑ �6}�}�} � �  = �++"6�  

• Therefore  

����" � +�E� � -" � 5 �66 � �
+6��   
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The Markov property 

• In a similar way it can be shown that  

���~" � +�E~ � -" � 5 �66 � �
+6�~  

• In principle, it can happen that the distribution ��~"
 is independent of t. This 

event is then referred to as a stationary distribution of the chain. 

- It occurs when ∑ �6�6�6 � � �  ��, for all j, or stated differently when � �  �+ 

- With �6 � +�E@ � |", also � �  �+~ and +�E~ � -" �  ��  
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Creating our own Markov chain simulation in practice 

• Assume the observed dinucleotide relative frequencies (each row specifies 

a base and each column specifies the following base): 

 A C G T 

A 0.146 0.052 0.058 0.089 

C 0.063 0.029 0.010 0.056 

G 0.050 0.030 0.028 0.051 

T 0.087 0.047 0.063 0.140 

 

• How to compute the individual base frequencies? 

• How to propose initial state parameters to build a Markov chain? 

• How to compute the transition matrix? 
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markov1 <- function(x,pi,P,n){ 

mg <- rep(0,n) 

mg[1] <- sample(x,1,replace=TRUE,pi) 

for (k in 1:(n-1)){ 

  mg[k+1] <- sample(x,1,replace=TRUE,P[mg[k],]) 

  } 

return(mg) 

} 

 

x<-c(1:4) 

pi <- c(0.342,0.158, 0.158, 0.342) 

# A C G T one-step transition matrix: 

P <- matrix(scan(),ncol=4,nrow=4,byrow=T) 

0.423 0.151 0.168 0.258 

0.399 0.184 0.063 0.354 

0.314 0.189 0.176 0.321 

0.258 0.138 0.187 0.415 
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tmp <- markov1(x,pi,P,50000) 

A<- length(tmp[tmp[]==1]) 

C<- length(tmp[tmp[]==2]) 

G<- length(tmp[tmp[]==3]) 

T<- length(tmp[tmp[]==4]) 

(C+G)/(A+C+G+T)   # fraction of G+C 

 

count <-0 

for (i in 1:49999){ 

  if (tmp[i]==2 && tmp[i+1]==3) 

  count <- count+1 

  } 

count/49999 # abundance of CG dinucleotide as estimated by the model 
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5 Biological words of length 3 

 

Introduction 

• There are 61 codons that specify amino acids and three stop codons. 

•  Since there are 20 common amino acids, this means that most amino 

acids are specified by more than one codon.  

• This has led to the use of a number of statistics to summarize the 

"bias" in codon usage.  

• Since there is variation in codon frequencies, it is interesting to investigate 

these frequencies in more detail  



Bioinformatics                                                                                                                                                                                  Chapter 4: Sequence analysis 

 

K Van Steen                                     296 
 

Predicted relative frequencies 

• For a sequence of independent bases L1, L2, ... , Ln the expected 3-

tuple relative frequencies can be found by using the logic employed 

for dinucleotides we derived before 

• The probability of a 3-word can be calculated as follows: 

• This provides the expected frequencies of particular codons, using 

the individual base frequencies 

• It follows that among those codons making up the amino acid Phe, 

the expected proportion of TTT is +����"+����" �  +���" 
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Predicted relative frequencies 

• Comparison of predicted and observed triplet frequencies in coding 

sequences for a subset of genes and codons from E. coli. Figures in 

parentheses below each gene class show the number of genes in 

that class. Table 2.3 from Deonier et al 2005. 
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Predicted relative frequencies 

• Medigue et al. (1991) 

clustered the different genes 

based on such codon usage 

patterns. 

• They observed three gene 

classes.  

• For Phe and Asn different 

usage patterns are observed 

for Gene Class I and Gene 

Class II.  

• For Gene Class II in particular, 

the observed codon 

frequencies differ 

considerably from their 

predicted frequencies 

 

 

 Moderate expr 

                  High expression levels
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The codon adaptation index 

• A statistic that can describe each protein-coding gene for any given 

organism is the codon adaptation index, or CAl (Sharp and Li, 1987).  

• This statistic compares the distribution of codons actually used in a 

particular protein with the preferred codons for highly expressed 

genes.  

• One might also compare them to the preferred codons based on gene 

predictions for the whole genome, but the CAI was devised prior to 

the availability of whole-genome sequences. 

 

 

 

 

. 
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The codon adaptation index 

• Consider a sequence of amino acids X = x1, x2, ... , xL representing 

protein X, with xk representing the amino acid residue corresponding 

to codon k in the gene.  

• We are interested in comparing the actual codon usage with an 

alternative model: that the codons employed are the most probable 

codons for highly expressed genes.  

• For the codon corresponding to a particular amino acid at position k in 

protein X, let pk be the probability that this particular codon is used to 

code for the amino acid in highly expressed genes 

• Let qk correspond to the probability for the most frequently used 

codon of the corresponding amino acid in highly expressed genes. 
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The codon adaptation index 

• The CAI is defined as  

 
 

• It is the geometric mean of the ratios of the probabilities for the 

codons actually used to the probabilities of the codons most 

frequently used in highly expressed genes.  

• An alternative way of writing this is  

 
 

• This expression is in terms of a sum of the logarithms of probability 

ratios, a form that is encountered repeatedly in other contexts as well.  
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The codon adaptation index

• The CAI can be shown to be correlated with mRNA levels

• Hence, the CAI for a gene sequence in genomic DNA provides a first 

approximation of its expression level: 

- if the CAI is relatively large, then w

expression level is also large.

 

• Consider the amino acid sequence from the amino terminal end of the 

himA gene of E. coli (which codes for one of the two subunits of the 

protein IHF: length L = 99).
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of E. coli (which codes for one of the two subunits of the 
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The codon adaptation index 

Example of codon usage patterns in E. coli for computation of the codon 

adaptation index of a gene. Top lines: amino acid sequence and 

corresponding codons. Upper table: probabilities for codons in lower table. 

The probability of the most frequently used codon in highly expressed genes 

is underlined (Fig 2.2 – Deonier et al 2005).  
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The codon adaptation index 

• The CAI for this fragment of coding sequence is given by  

• If every codon in a gene corresponded to the most frequently used 

codon in highly expressed genes, then the CAI would be 1.0.  

• In E. coli a sample of 500 protein-coding genes displayed CAI values in 

the range from 0.2 to 0.85 (Whittam, 1996)  
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Word distribution and occurrences - The biological problem 

• Suppose that we wanted to obtain a sample of DNA that contained a 

specific gene or portion of a gene with very little other DNA.  

• How could we do this?  

- Today, given a genome sequence, we could design PCR primers 

flanking the DNA of interest and could amplify just that segment 

by PCR.  

- Prior to the development of rapid genomic sequencing 

technologies, the process was much more complicated.  
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The biological problem 

• DNA is a macromolecule: DNA molecules can have very high 

molecular weights.  

• Because DNA can be long but is very thin, it is easily broken by 

hydrodynamic shear (e.g. due to physical stress induced by 

nebulisation).  

- Note that the DNA in human chromosome 1, at 245,000,000bp, is 

8.33cm long and only 20 x10-
8
 cm thick 

• Such a long molecule cannot be transferred from one sample tube to 

another without breakage during pipetting.  

• The result of shearing is a collection of DNA fragments that are not 

broken at the same position:  molecules containing the gene of 

interest intact might be very rare. 
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The biological problem 

• Restriction endonucleases provides the means for precisely and 

reproducibly cutting the DNA into fragments of manageable size 

(usually in the size range of 100s to 1000s of base pairs), and  

• molecular cloning provides the method for amplifying the DNA of 

interest  

• Cloning puts DNA of manageable size into vectors that allow the 

inserted DNA to be amplified, and the reason for doing this is that 

large molecules cannot be readily manipulated without breakage.  
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The biological problem 

• A restriction map is a display of positions on a DNA molecule where 

cleavage by one or more restriction endonucleases can occur.  

• It is created by determining the ordering of the DNA fragments 

generated after digestion with one or more restriction 

endonucleases.  

• The restriction map is useful not only for dissecting a DNA segment 

for further analysis but also as a "fingerprint" or bar code that 

distinguishes that molecule from any other molecule. 

• A graphical summary is given in the following figure (Figure 3.1 – 

Deonier et al 2005)  
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The biological problem 

• The order of fragments (D, A, F, G, C, E, B) is originally unknown. A 

variety of techniques may be employed to determine this order.  
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The biological problem 

• Although restriction mapping is not as central as it once was for 

genome analysis, workers at the bench still use restriction mapping 

to evaluate the content of clones or DNA constructs of interest 

• Hence, being able to determine locations and distributions of 

restriction endonuclease recognition sites is still relevant.  

- A probabilistic basis is needed for analyzing this kind of 

problem.  

- In addition, word occurrences can be used to characterize 

biologically significant DNA subsequences.  
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6 Modeling the number of restriction sites in DNA 

Introduction 

• Modelling the number of restriction sites in DNA is important when 

addressing the following questions: 

- If we were to digest the DNA with a restriction endonuclease 

such as EcoR1, approximately how many fragments would be 

obtained, and what would be their size distribution?  

- Suppose that we observed 761 occurrences of the sequence 5'-

GCTGGTGG-3' in a genome that is 50% G+C and 4.6 Mb in size.  

� How does this number compare with the expected number?  

� How would one find the expected number?  

� Expected according to what model?  
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Introduction 

• We will model the underlying sequence as a string of iid letters and 

will use this model to find the probability distribution of the number 

of restriction endonuclease cleavage sites and the distribution of 

fragment sizes of a restriction digest.  

• Because of their occurrence in promoter regions, it is also relevant to 

inquire about the expected frequencies of runs of letters (such as 

AAAAAA···A tracts).  
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Introduction 

• While doing so we assume, as before, that the genome of an 

organism can be represented as a string LI, ... , Ln drawn from the 

alphabet � � �N�, N�, NA, N� � �  ��, , �, ��, where n is the number 

of base pairs 

• Note that if we are given a DNA sample, we usually know something 

about it; at least which organism it came from and how it was 

prepared.  

- This means that usually we know its base composition (%G+C) 

and  

- its approximate molecular weight, useful pieces of information 
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The number of restriction sites 

 

• Restriction endonuclease recognition sequences have length t (4, 5, 

6 or 8 typically), where t is much smaller than n. 

• Our model assumes that cleavage can occur between any two 

successive positions on the DNA.  

- This is wrong in detail because, depending upon where cleavage 

occurs within the bases of the recognition sequence (which may 

differ from enzyme to enzyme), there are positions near the ends 

of the DNA that are excluded from cleavage.  

- However, since t is much smaller than n, the ends of the 

molecule do not affect the result too much  
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The number of restriction sites 

 

• We again use Xi to represent the outcome of a trial occurring at 

position i, but this time Xi does not represent the identity of a base 

(one of four possible outcomes) but rather whether position i is or is 

not the beginning of a restriction site.  

• In particular,   

 

• We denote by p the probability that any position i is the beginning 

of a restriction site:  
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The number of restriction sites 

 

• Unlike with tossing a fair coin, for the case of restriction sites on 

DNA, p depends upon  

- the base composition of the DNA and  

- the identity of the restriction endonuclease.  

• For example: 

- Suppose that the restriction endonuclease is EcoRI, with 

recognition sequence 5'-GAATTC-3'.  

� The site really recognized is duplex DNA, with the sequence 

of the other strand determined by the Watson-Crick base-

pairing rules. 

- Suppose furthermore that the DNA has equal proportions of A, C, 

G, and T.  
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The number of restriction sites 

 

- The probability that any position is the beginning of a site is the 

probability that this first position is G, the next one is A, the next 

one is A, the next one is T, the next one is T, and the last one is C.  

- Since, by the iid model, the identity of a letter at any position is 

independent of the identity of letters at any other position, we 

see from the multiplication rule that  

 

- Notice that p is small, a fact that becomes important later.  
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The number of restriction sites 

 

• The appearance of restriction sites along the molecule is 

represented by the string X1, X2, ... , Xn,  

• The number of restriction sites is N = X1 + X2 + '" + Xm,  

where m = n - 5.  

- The sum has m terms in it because a restriction site of length 6 

cannot begin in the last five positions of the sequence, as 

there aren't enough bases to fit it in.  

- For simplicity of exposition we take m = n in what follows.  

• What really interests us is the number of "successes" (restriction 

sites) in n trials. 
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The number of restriction sites 

 

• If X1, X2, …, Xn were independent of one another, then the 

probability distribution of N would be a binomial distribution with 

parameters n and p;  

- The expected number of sites would therefore be np  

- The variance would be np(1 - p). 

• We remark that despite the Xi are not in fact independent of one 

another (because of overlaps in the patterns corresponding to Xi 

and Xi+1, for example), the binomial approximation usually works 

well.  

• Computing probabilities of events can be cumbersome when using 

the probability distribution  +�, � -" � .*- / ���1 % �"
0�, j = 0,1, …,n 
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Poisson approximation to the binomial distribution 
 

• In preparation for looking at the distribution of restriction fragment 

lengths, we introduce an approximate formula for P(N = j) when N 

has a binomial distribution with parameters n and p.  

• Using the example for EcoRI before with p = 0.00024 for DNA that 

has equal frequencies of the four bases, a molecule that is 50,000 bp 

long would have 50,000 x 0.00024 = 12 expected sites according to 

our model.  

• Notice that because p is very small, the number of sites is small 

compared to the length of the molecule.  

- This means that VarN = np(1 - p) will be very nearly equal to EN = 

np.  

- Contrast this with a fair coin-tossing experiment, where p = 0.5. 

With 300 coin tosses, we would have EN = 300 x 0.5 = 150, and 

VarN = 300 x 0.5 x (1 - 0.5) = 75.  
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Poisson approximation to the binomial distribution 

 

• In what follows, we assume that n is large and p is small, and we set 

λ= np.  

• We know that for j = 0, 1, ... , n,  +�, � -" � .*- / ���1 % �"
0�  

• Writing 

and given that the number of restriction sites (j) is small compared to the 

length of the molecule (n), such that 

*�* % 1"�* % 2" … �* % - � 1" U *� , �1 % �"� U 1, 
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Poisson approximation to the binomial distribution 

    in which � � *�. 
• From calculus, for any x,  

• Since n is large (often more than 10
4
), we replace �1 % �
"
 by �0� to 

get our final approximation in the form  

• This is the formula for the Poisson distribution with parameter � � *� = 

Var(N) = E(N) 
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Poisson approximation to the binomial distribution 

 

• Example: 

- To show how this approximation can be used, we estimate the 

probability that there are no more than two EcoRI sites in a DNA 

molecule of length 10,000, assuming equal base frequencies 

- Earlier we obtained p=0.00024 for this setting. 

- The problem is to compute +�, 9 2" 

� Therefore � � *� � 2.4  

� Using the Poisson distribution: +�, 9 2" U 0.570 

� Interpretation: More than half the time, molecules of length 10,000 

and uniform base frequencies will be cut by EcoRI two times or less 

• R code:  

ppois(2,2.4)  
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The Poisson process 

• There is a more general version of the Poisson distribution that is very  

useful.  It generalizes n into "length" and p into "rate." The mean of 

the corresponding Poisson distribution is length x rate. We suppose 

that events (which were restriction sites above) are occurring 

uniformly on a line at rate μ then  

• If there is more than one interval, the lengths of the intervals 

simply add, 

as long as the intervals are disjoint (i.e.,  � � �� e� 9 � � � � e�). 
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Distribution of restriction fragment lengths 

• With this generalization, we assume that restriction sites now occur 

according to a Poisson process with rate � per bp. Then the 

probability of k sites in an interval of length l  bp is  

 
• We can also calculate the probability that a restriction fragment 

length X is larger than x. If there is a site at y, then the length of that 

fragment is greater than x if there are no events in the interval (y, y 

+ x): 
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Distribution of restriction fragment lengths 

• The previous has some important consequences: 

 

so that the density function for X is given by 

 

• The distance between restriction sites therefore follows an exponential 

distribution with parameter � 

- The mean distance between restriction sites is 1/�   
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Simulating restriction fragment lengths 

• From the previous, the restriction fragment length (fragment size) 

distribution should be approximately exponential 

• But what would we actually see for a particular sequence conform to 

the iid model (AluI enzyme with recognition sequence AGCT)?  

 

Fragment sizes (bp) produced by AluI digestion of bacteriophage lambda DNA 
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Simulating restriction fragment lengths 

• In other words, if we simulated a sequence using the iid model, we 

could compute the fragment sizes in this simulated sequence and 

visualize the result in a manner similar to what is seen in the actual 

case in the figure on the previous slide (Fig. 3.3. Deonier et al 2005) 

• R code simulating a DNA sequence having 48500 positions and 

uniform base probabilities: 

x<-c(1:4) 

propn <- c(0.25,0.25,0.25,0.25) 

seq2 <- sample(x,48500,replace=TRUE,prob=propn) 

seq2[1:15] 

length(seq2[])  
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Simulating restriction fragment lengths 

• R code identifying the restriction sites in a sequence string, with bases 

coded numerically: 

rsite <- function(inseq, seq){ 

  # inseq: vector containing input DNA sequence, 

  # A=1, C=2, G=3, T=4 

  # seq: vector for the restriction site, length m 

  # Make/initialize vector to hold site positions found in inseq 

  xxx <- rep(0,length(inseq)) 

  m <-length(seq) 

  # To record whether position of inseq matches seq 

  truth <- rep(0,m) 
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# Check each position to see if a site starts there 

  for (i in 1:(length(inseq) - (length(seq) -1))){ 

    for (j in 1:m){ 

      if (inseq[i+j-1]==seq[j]){ 

      truth[j] <- 1 # Record match to jth position 

      } 

    } 

    if (sum(truth[]) ==m){ # Check whether all positions match 

    xxx[i] <- i          # Record site if all positions match 

    } 

    truth <- rep(0,m)    # Reinitialize for next loop cycle 

  } 

  # Write vector of restriction sites positions stored in xxx 

  L <- xxx[xxx>0] 

  return(L) 

} 
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Simulating restriction fragment lengths 

• The restriction sites we look for are for AluI, AGCT. 

• R code envoking the appropriate function: 

 

alu1 <- c(1,2,3,4) 

alu.map <- rsite(seq2,alu1) 

length(alu.map) 

alu.map[1:10] 

 

How close is the actual number of restriction sites to the 

number predicted by our mathematical model? 
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Simulating restriction fragment lengths 

• The fragment lengths can be obtained by subtracting positions of successive 

sites 

• R code doing it for you: 

flengthr <- function(rmap,N){ 

  # rmap is a vector of restriction sites for a linear molecule 

  # N is the length of the molecule 

  frags <- rep(0,length(rmap)) 

  # Vector for substraction results: elements initialized to 0 

  rmap <-c(rmap,N) 

  # Adds length of molecule for calculation of end piece 

  for(i in 1:(length(rmap)-1)){ 

  frags[i] <- rmap[i+1]-rmap[i] 

  } 

  frags <- c(rmap[1],frags) # First term is left end piece 

  return(frags) 

}  
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Simulating restriction fragment lengths 

• R code continued …. 

alu.frag <- flengthr(alu.map,48500) 

alu.frag[1:10] 

 

What is the largest or smallest fragment? 

max(alu.frag[]) 

min(alu.frag[]) 

 

Internal checks 

length(alu.frag[]) 

sum(alu.frag[]) 

How come that the  

length of alu.frag is one more than the length of alu.map? 
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Simulating restriction fragment lengths 
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Simulating restriction fragment lengths 

• The previous plots were obtained via the R code: 

 

plot(c(0,2500),c(3,1),xlab="Fragment Size",ylab="",type="n",axes=F) 

axis(1,c(0,500,1000,1500,2000,2500)) 

for (i in 1:length(alu.frag)){ 

lines(c(alu.frag[i],alu.frag[i]),c(1,3)) 

} 

hist(alu.frag,breaks=seq(0,2500,50), freq = TRUE,xlab="Fragment Size") 

 

• The main important question is: 

Is our theoretical model still ok when looking at  

restriction fragment lengths?  
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Histogram of fragment sizes (bp) 

digestion of 

acteriophage lambda DNA 



Bioinformatics                                                                                                                                                                                  Chapter 4: Sequence analysis 

 

K Van Steen                                     337 
 

Simulating restriction fragment lengths

• To determine whether the distribution in case of lambda DNA differs 

significantly from the mathematical model (exponential distribution), 

we could break up the length axis into a series of "bins" and 

calculate the expected number of fragments in each bin by using the 

exponential density.  

• This would create the entries for a histogram based on the 

mathematical model. 

• We could then compare the observed distribution of fragments from 

lambda DNA (using the same bin boundaries) to the expected 

distribution from the model by using for instance a �� – test. 
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Occurrences of k-words                     (home reading) 

Introduction 

• The aforementioned statistical principles can be applied to other 

practical problems, such as discovering functional sites in DNA.  

• We will use promoter sequences as an example.  

• Promoters are gene regions where RNA polymerase binds to 

initiate transcription.  

• We wish to find k-words that distinguish promoter sequences 

from average genomic sequences.  

• Because promoters are related by function, we expect to observe 

k-words that are over-represented within the promoter set 

compared with a suitable null set.  
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Introduction 

• Using already known methods, we will determine expected k-word 

frequencies and compare them to the observed frequencies.  

• Via theoretical distributions, it can be tested whether over-

represented k-words appear with significantly higher frequencies 

than the reference
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Counting k-words in promoter sequences 

• Consider N promoter sequences of length L bp, which we denote 

by��, … , �
.  

• The null set might consist of N strings of L iid letters, each letter 

having the same probability of occurrence as the letter frequencies 

in genomic DNA as a whole.  

• Here, we take a small word size, k = 4, so that there are 256 possible 

k-words. With no a priori knowledge of conserved patterns, we must 

examine all 256 words.  

• Question: Are there an unusual number of occurrences of each word 

in the promoter region? 
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Counting k-words in promoter sequences 

• 8 promoter sequences (-75 - +25 to transcriptinal start site) are given in the 

file promseqex.txt 

• The expectation of each 4-word according to the null (iid) model is easily 

computed: +�� � ���" �  �'�;�<�� I�nr of times � appears in �_| " � �d % 4 � 1" �'�;�<�� I�E�" � ,�d % 4 � 1" �'�;�<�� 

 

with E� the number of occurrences in N sequences 
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Counting k-words in promoter sequences 

• R code: 

ec.prom <- read.table("promseqex1234.txt",sep="",header=F) 

ec.prom <- as.matrix(ec.prom) 

ec.prom <- ec.prom[,-ncol(ec.prom)] 

ncol(ec.prom) 

w <- 4 # restricting attention to 4-words 

 

prob.ec <- c(0.246,0.254,0.254,0.246) # base frequencies for the E coli sequence 

expect4.ec <- array(rep(0,4^w),rep(4,w)) # 4 is the max value in each dim for w 

                                         # there are w dimensions 

for (i in 1:4){ 

  for (j in 1:4){ 

    for (k in 1:4) { 

      for (m in 1:4) { 

        expect4.ec[i,j,k,m] <- 8*97*prob.ec[i]*prob.ec[j]*prob.ec[k]*prob.ec[m] 

                            # 8 is the number of sequences in this example 
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                            # L-w+1 = 100 - 4 + 1 = 97 

       } 

    } 

  } 

} 

 

 

Ncount4 <- function(seq,w){ 

  # w is length of word 

  tcount <- array(rep(0,4^w),rep(4,w)) 

  # array[4 times 4 times 4 times 4] to hold word counts, elements set to zero 

  N <- length(seq[1,]) # length of each sequence 

  M <- length(seq[,1]) # number of sequences 

 

   

 

## 
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  # Count total number of word occurrences 

  for (j in 1:M){ # looping over sequences 

    jcount <- array(rep(0,4^w),rep(4,w)) 

    # array to hold word counts for sequence j 

    for (k in 1:(N-w+1)){ # looping over positions 

    jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] <- 

     jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] +1 

     # adds 1 if word at k, k+1, k+2, k+3 appears in sequence j 

    } 

    tcount <- tcount + jcount 

    # add contribution of j to total 

  } 

  return(tcount) 

} 

 

  prom.count <- Ncount4(ec.prom,4) 

Counting k-words in promoter sequences 
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Internal check 
 

  sum(prom.count)  

What is the most frequent word? 
 

  max(prom.count) 

How many words occur more at least 10 times? 
 

  length(prom.count[prom.count[,,,]>=10]) 

  (1:256)[prom.count[,,,]>=10]          # the actual positions  

  prom.count[prom.count[,,,]>=10] # the actual values 

  



Bioinformatics                                                                                                                                                                                  Chapter 4: Sequence analysis 

 

K Van Steen                                     346 
 

Counting k-words in promoter sequences 

How to know to which 4-words the positions refer to? 

kwordseq <- NULL 

for (i in 1:4){ 

  for (j in 1:4){ 

    for (k in 1:4) { 

      for (m in 1:4) { 

        kwordseq <- c(kwordseq,paste(i,j,k,m,sep="")) 

      } 

    } 

  } 

} 

kwordseq[(1:256)[prom.count[,,,]>=10]] 

 

• The actually observed word frequencies need to be compared with those 

obtained via our mathematical model  
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Counting k-words in promoter sequences 

Word Observed Freq Expected Freq 

"1111" 14 2.841857 

"1144" 12 2.841857 

"2124" 10 3.029698 

 

• R code : 

kwordseq[(1:256)[prom.count[,,,]>=10]] 

prom.count[prom.count[,,,]>=10] 

expect4.ec[(1:256)[prom.count[,,,]>=10]] 

 

• Are these abundances significant ? 

- So what is the expected number of occurrences of the k-word? 

- How are these numbers distributed? 
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Counting k-words in promoter sequences 

• Previously, we counted all occurrences of a k-word in the whole set of N 

regions 

• Alternatively, we can count the number of promoter sequences in which 

the word occurs at least once. 

- Why is it sufficient to look at “at least one”, without further 

specification? � Only one occurrence at a particular location may be 

sufficient for functioning 

• This will lead to an alternative statistic of which the distribution conforms 

to the normal approximation of the binomial distribution 
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Counting k-words in promoter sequences 

• In practice: 

- Simulate 5000 sequences with letter probabilities corresponding to the 

E coli genome 

- Use the simulated data to estimate 

 
• For the number ,� of promoter sequences in which w appears at least 

once,                             

Y� �  ,� %  8���8���1 % ��" ~ ,�0,1"  
when there would be 8 trials.  

Note that this is in fact too small for the normal approximation to 

hold, but in other situations it may actually perform pretty well. 
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Counting k-words in sequences 

Ncount4b <- function(seq,w){ 

  # w is length of word 

  tcount <- array(rep(0,4^w),rep(4,w)) 

  # array[4 times 4 times 4 times 4] to hold word counts, elements set to zero 

  ncount <- array(rep(0,4^w),rep(4,w)) 

  # array[4 times 4 times 4 times 4] holds number of sequences with one or more of 

each k-word 

  N <- length(seq[1,]) # length of each sequence 

  M <- length(seq[,1]) # number of sequences 

 

  # Count total number of word occurrences 

  for (j in 1:M){ # loopiing over sequences 

    jcount <- array(rep(0,4^w),rep(4,w)) 

    # array to hold word counts for sequence j 

    for (k in 1:(N-w+1)){ # looping over positions 

    jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] <- 

     jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]] +1 

     # adds 1 if word at k, k+1, k+2, k+3 appears in sequence j 
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    } 

    tcount <- tcount + jcount 

    # add contribution of j to total 

 

      # plug-in: add 1 to ncount if word occurs W= once in j 

    for (k in 1:4){ 

      for (l in 1:4){ 

        for (m in 1:4) { 

          for (n in 1:4) { 

            if (jcount[k,l,m,n]!=0){ 

           ncount[k,l,m,n] <- ncount[k,l,m,n]+1 

           } 

          } 

        } 

      } 

    } 

  } 

  return(tcount,ncount) 

} 
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Counting k-words in sequences 

• R code for computation of �� 

 

ec.sim <- matrix(nrow=5000,ncol=51) 

for (i in 1:5000){ 

  ec.sim[i,] <- sample(x,51,replace=T,prob.ec) 

} 

sim.count <- Ncount4b(ec.sim,4) 

 

• R code for computation of ,� 
 

prom.count$ncount[1,1,1,1] 

prom.count$ncount[1,1,4,4] 

prom.count$ncount[2,1,2,4] 
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Counting k-words in sequences 

Word Observed Freq Expected Freq ��  ��  p-value 

"1111" 14 2.841857 7 0.1356 5.027e-10  

"1144" 12 2.841857 6 0.1474 7.627e-07  

"2124" 10 3.029698 4 0.1642 5.176e-03 

A=1; C=2; G=3; T=4 

• R code for computation of p-values 

Nw <- 

c(prom.count$ncount[1,1,1,1],prom.count$ncount[1,1,4,4],prom.count$ncount[

2,1,2,4]) 

pw <- 

c(sim.count$ncount[1,1,1,1]/5000,sim.count$ncount[1,1,4,4]/5000,sim.count$n

count[2,1,2,4]/5000) 

options(digits=4) 

Zw <- (Nw-8*pw)/sqrt(8*pw*(1-pw)) 

1-pnorm(Zw)  
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References: 

• Deonier et al. Computational Genome Analysis, 2005, Springer. 

 (Chapters 2,3) 

 

Background reading: 

• HT_BioC_manual: http://htseq.ucr.edu/ (part of R BioConductor Manual) 

• Morgan et al 2009. ShortRead: a Bioconductor package for input, quality assessment, and 

exploration of high throughput sequence data. Bioinformatics Advance Access published 

August 3. 

• I/0 and Quality Assessment using ShortRead. R document May 31, 2009 

• Bangham 2005. The (computational) means and the motif. Nature Reviews Genetics – 

Bioinformatics 6:161. 

 

• Key “for your library” reference: Venter et al 2001. The sequence of the human genome. 

Science 291: 1304-. 
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In-class discussion document 

• Gregory 2005. Synergy between sequences and size in large-scale genomics. Nature Reviews 

Genetics 6: 699-. 

Questions: In class reading_4.pdf 

 

Preparatory Reading: 

• Bioinformatics explained: BLAST 

• Bioinformatics explained: Smith-Waterman 

• Bioinformatics explained: BLAST versus Smith-Waterman 

 


